Int. J. Solids Structures Vol. 25, No. {1 pp. 12711278, I98% DO20-7683.89 $1.06- 00
Printed in Great Britain. ¢ 1989 Pergamon Press pic

UNIQUENESS OF INITIAL-BOUNDARY VALUE
PROBLEMS IN NONLOCAL ELASTICITY

S. BURHANETTIN ALTANY
Princeton University, Department of Civil Engineering. Princeton, NJ 08544, US.A.

{Received 21 August 1987 ; in revised form 9 November 1988)

Abstract—In this study we have dealt with the uniqueness of the solutions of a class of initial-
boundary value problems in linear. isotropic. homogeneous, nonlocal elasticity. The proof of
uniqueness is based on the positive definiteness of total strain energy. After giving the sufficient
conditions under which total strain energy is positive definite, it has been shown that the solutions
of the initial-boundary value problems which are considered in this study are unique. Existence of
the solutions of these problems is an a priori assumption.

f. INTRODUCTION

Onc of the main streams of the advancement of science is to expand the extent of the
fundamental hypotheses of a thecory when the theory proves insufficient in explaining the
problems in its ficld. Although these enlargements bring a lot of complications the efforts
go on for the sake of being able to explain more phenomena. As well as in the other branches
of science, in continuum mechanics there are many rescarches made in this direction.
Among them, the nonlocal theory of continuum mechanics is perhaps the most recent one.,
As well as the other nonlocal theories in continuum mechanics, the nonlocal theory of
clasticity is also of recent origin and differs from the local one in fundamental hypotheses.
As is well known, in the classical theory of clasticity, the balance laws are postulated to be
valid in any portion to be cut from the body. In nonlocal clasticity, this postulate is
abandoned and the balunce laws are assumed to be valid only on the whole of the body.
As a result of this approach the constitutive equations of nonlocal clasticity appear as
integral equations, in terms of strain tensor, cither the Fredholm equation of first kind

L, (x, 1) = fa(lx —xX') A (X° )3+ 2p8,,(x" D)} do(x”) )
)
or the Fredholm equation of second kind

1N 1) = Zeg (X, 08+ 2ue,(X, ) +9(8) J}B(lx—«‘[, EVAee (X 03, + 2pe, (X, 1)} de(x’)
B

2

for lincar, isotropic, homogeneous materials. For the physical background of the constitu-
tive equations of nonlocal elasticity Kroner (1967), Kunin (1983) and Rogula (1982) can
be consulted. Similar results are obtained by Eringen and Edelen (1972) by employing
thermomechanical and variational approaches. To describe the kernels (they are called an
interaction kernel in nonlocal mechanics) appearing in these equations, the dispersion
relations which are obtained by lattice dynamics, arc employed (Eringen, 1972, 1973). The
probiems solved in the frame of nonlocal elasticity indicate the power of this approach
(Eringen et al., 1977 ; Eringen, 1978).

Since the nonlocal theory of elasticity is of recent origin it is open to study from many
points of view. Perhaps, the most important question is whether the problems defined in
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the frame of nonlocal elasticity are well-posed. For this purpose. we find it very useful to
study the conditions under which the solutions of the problems which are defined in nonlocul
elasticity exist and are unique.

The uniqueness of the solutions of the boundary value problems in classical elasticity
was first studied by Kirchhoff t in the 1850s. Kirchhoff has shown that if the strain energy
is non-negative then a boundary value problem in elasticity possesses at most one solution,
if it exists. Moreover Kirchhoff has also shown that if the elastic constants £ and x obey
the inequalities

3i4+2u>0. u>0 3)

then the strain energy stored in the body due to a three-dimensional displacement field is
non-negative. In the linear theory of elastodynamics the analogous result due to Neumannj
is that the initial-boundary value problems possess only one solution provided that the elastic
constants satisfy the inequalities (3). For an extensive account on the uniqueness theorems
in linear elasticity Knops and Payne (1971) can be consulted.

The main goal of this study is to construct a uniqueness theorem for the initial-
boundary value problem of homogeneous, isotropic. lincar nonlocal elastodynamics. Ina
previous work of the author (Altan, 1984) an analogous theorem has been given where the
constitutive rclation was of the form (1). In this study the stress-strain relation is taken to
be (2).

In the following section notation and some mathematical preliminaries are introduced.
In Scction 3 the initial-boundary value problems considered in this study are defined and
the conditions under which the total strain encrgy is non-negative, are obtained. In Section
4 it is shown that the solutions of the considered initial-boundary value are unique. Finally,
a short discussion on the constitutive relations (1) and (2) is given.

2. NOTATION AND SOME PRELIMINARIES

Throughout this paper Cartesian coordinates and conventional indicial notation are
used. Subscripts will have the range of the integers 1, 2.3 and denote the Cartesian com-
ponents of a tensor-valued function, Repeated indices imply the summation over the range
and the indices following a comma indicate partial differentiations with respect to coor-
dinates. A superposed dot is used for time derivative. Bis an open, bounded region in three-
dimensional Buclidean space which is occupied by the body. The clements of this spuce are
denoted by x (position vector). The boundary of the closure of B is shown by § and for
the components of the unit outward normal of § the notation n, is used. To avoid some
geometrical complications the region B and the surfice S are assumed to be sulliciently
smooth so thut the Green-Gauss identity is valid :

J divV de = J\'-n du (4)
R N

where V is a continuous tensor-valued function. «,. ¢, 1, are used to denote the Cartesian
components of infinitesimal displacement vector, strain and stress tensors, respectively,
p(x) and /£, are the body forces and mass density, p(x) > 0 is assumed.

The following preliminarics are very uscful for the purposes of this study : Let K(x,2)
be a real-valued, continuous, symmetric and square integrable function in Bx B.i.c.

K(x.z) = K(z,x) forall x.,zeB (5

and
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R
J Jll\'(x. z)|° de(x) de(z) = C* < =. 6
BJ B

Such a function can be expressed as an infinite {or finite. if the kernel is degenerate) sum
almost everywhere in 8x B:

K(x.2) = Y & '0,(x)0,(2). (M

j=0

Here {®,(x)} < , is an orthonormal base which should not be necessarily complete in square
integrable function space {L.(B)} and {x,} %, is a monotone increasing sequence of real
numbers. Let {W¥,(x)},% . be a complete orthonormal base in L.(8) including all of the
elements of the set {d,(x)]/Zs. As is well known, any arbitrary function f(x)e L,(8) can
be expressed to be an infinite sum in terms of W,{(x),

S =3 f(x) (8)
j=0
where
f= j.f'(X)‘P,(x) de. (9
B

For more information about the integral equation with symmetric kernels consult
Pogorzelski (1966).

3O INITIAL-BOUNDARY VALUE PROBLEMS IN NONLOCAL ELASTICITY

In this section we wish to introduce a cluss of initial-boundary value problems in
nontocal clasticity, Since the ticld cquations of nonlocal clasticity are different from the
classical onces, definitions of the initinl-boundary problems in nonlocal clasticity should be
studied separately, Such studies will be very useful for the improvement of nonlocal theory.
The main purpose of this study is to discuss the uniqueness of a class of initial-boundary
boundary problems whosce definitions are in accordance with the classical ones, rather than
to discuss the definitions of the initial-boundary value problems in nonlocal clasticity.
Morcover, the mitial-boundary value problems defined in this study ure compatible with
the other studies in nonlocal clasticity : lesan (1977), Eringen er of. (1977). Eringen and
Balta (1979), Eringen (1979} and recently Eringen (1987). Ari (1982) indicated that the
mixed boundary conditions in nonlocal elasticity should be treated in a ditferent way but
we will not consider them in this study.

The ficld equations of homogencous, isotropic. lincar, nonlocal elasticity consist of the
displacement strain relations

e, (1) =, (X D +u, (X0 {10)
the equations of metions
"fi.i(x* ’) +j;(x~ I) = p{x)ﬁ:(x‘ {)0 tii = I;i (l [)
and rhe stress—strain relations
(8.0 = A6 (X, D3, + 2pue, (X D +7(S) Ja(lx =X}, E) e (X7, )3+ 2ue, (X7, 1)} de(x").
8

(12)
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We assume that the interaction kernel 2(Jx —x'{, {) is a continuous and square integrable
function in B x B for each value of ¢ interaction parameter.
The functions U(x). ¥,(x) which are defined by
U(x) = u{x,0), Vix)=u(x.0) xebB (3

are the initial conditions for displacement and velocity fields, respectively.
We define the boundary conditions to be the displacement boundary condition

U(x.t) = t,(x.1) X€S,, —w0<t<® (14)
and the traction boundary condition
T.(x.1) = ;(x.0) = t,;(x.On(X) X€S,, —x <I<% (15)
where S, and S, are the non-overlapping complementary parts of S.
We define the solution of an initial-boundary value problem of non-local elasticity as

being to find a triplet {u,(x. 0. &,(x.0). t;(x. 1)} which satisfies the ficld equations (10)-(12),
initial conditions (13), and the boundary conditions (14), (15).

4. POSITIVE DEFINITENESS OF THE TOTAL STRAIN ENERGY

In this section the positive definiteness of the total strain encrgy of homogencous,
isotropic, lincar, nonlocal elasticity will be investigated. The positive definiteness of total
strain energy has a very important role in many cases. I this property fails it can be
casily shown that a body has some cquilibrium positions energetically identical which are
physically impossible.

The total strain encrgy at a time ¢ is defined as follows,

[}
Wi = f jt,,(x‘ ) (x. ) deixy t, —w <t < w. (16)
- % 8
Introducing the constitutive equation (12) into (16)

W) = j J{}'E""(x‘ T)Er(X, 1) + 2pe,(x, 1)E;(x, 1)} de de
- I3

+7($) j J.j‘a(lx—x’l.é){r’-t:kk(X’.r)éu(x.r)
NS B B

+2pe, (X 1), (x, 1)} de" de dr (17)
is obtained. I it is assumed that
llim £,(x,t)=~0 xe8B (18)

then it can be easily shown that from (17)

QW = J{).;:,‘,‘(x,l)r.,,(x.I)+2;m,-,(x.t)a,-,(x,l)} de+y(5) fja(lx—x’l.:)
BJ B

B

X { A (X', 0E(X. )+ 2ue, (X", D (x. 1)} de” de (19)

can be obtained. Let us consider the orthonormal base {'¥,(x)},%., which is complete in
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L.(B) and also contains the eigenfunctions {®;(x)} 2 ; of the interaction kernel 2(|x —x"|. 0.
According to (7) and (8) we can write

g (x.t) = Y EP(OY.(x) (20)
n=0
where
Ef';)(‘) = Jsij(x~ nw¥,(x) dr. n
8

Substituting (19) into (I8) we arrive at

W) = Y GESOVER () +2REPOED ()}

n=10

+7(9) Zﬂ a7 AED(VER () +2EQ(VED (D). (22)

[t should be noted that the terms appearing in the first sum are the generalized Fourier
cocflicients of the functions &,(x,¢) with respect to the complete orthonormal base
W, (x)!,p. But the terms appearing in the second sum are calculated via the set
1 (x)}, ., which consists of the cigenfunctions of the kernel. Since we have assumed
that the set {,(x)}, -, is a subset of the complete base {¥,(x)},% 4 the expression (21)
is the sum of two different kinds of terms. One of them is

Qi (1) = AER (NER () +20ER (D ER (1) (23)
and the other is
Qia{0) = {1 4+3(D)a " HAEG (VER (1) + 20EF (DER (1)) (24)

It can be easily shown that if
JA42u>0, u>0 (25)

then the quadratic form given by (23) is positive definite. On the other hand, if, in addition
to the conditions (25), the condition

1+9(9x ' >0 (26)
is also satisficd it is clear that the quadratic form given by (23) is also positive definite. In
this case, the expression (22} is the sum of positive terms. Consequently, we arrive at the
following result, Ler the interaction kernel x(|x — X'}, &), be a continous function in L.(B x B)

with the eigenvalues a(k = 1,2,...). If the elastic constants A, u and the eigenvalues of the
interaction kernel 2,(k = 1,2, ...) obey the following inequalities,

B+2u>0, >0, 1+9(&x ' >0, k=1,2,... Q2n

then the total strain energy defined by (16) is positive definite, ie.
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W) >0 forall . (28)

5. UNIQUENESS OF THE SOLUTIONS

In this section we wish to show that the positive definiteness of the total strain energy
assures the uniqueness of the initial-boundary value problems defined in this study. To this
end. let us assume that we have been able to find two different solutions tor an initial-
boundary value problem. {u;(x, 7). &/, (X. ¢). ¢/, (. ) }. and (¢}’ (x.0). &, (x. 1), £}, (X. 1) }. Because
of the linearity the difference solution defined by

’e

o= —ul & = E—EL. b=t (29)

will be the solution corresponding to the null data

fix.)=0 xeB. —w<I<x®
Uix)=0. Vi(x)=0 xeB
C(x.) =0 xe8,. T.(x.)=0 xe§5. —w<t<=. (30)

Now, let us multiply the equations of motions (1) by 4,(x. 7) and integrate over the body

fr,,_,(x.l)li,(x.r) de+ f/}(x.l)ti,(x.t) de = J;)(x)t'i,(x.l)li,(x.!) de. (R

B " o

I we employ the Green Gauss identity and remember that the stress tensor is symmetric
then we obtain

J L, (X 0, 0) de = J1,,(x.l)1},(x.!)n,(x.l) da - Jl,,(x.l):i,,(x.l) de. (32)
i AY n

Substituting (32) into (31)

-~

J L, (x, e (x00) de + J‘p(x)ii,(x, Ha,(x, 1) de
B

B

= J/,’(x,l):},(x.l) de + jr,,(x.r)zi,(x.t)u,(x.l) da  (33)
R 5
can be written. This equation can be casily integrated with respect o time:

J Do (X DXL 1) + 2pe,, (X e, (%, 0] de+3(E) J‘ fﬂ(lx—x'[.i)
B 8

X L An (X7 Deg(X. 1) + 2pe, (X", e, (x,. 0} de” de+ j;)(x)li,(x. i, (x. 1) de
]

= J‘ J\j;(x.l)l.l,(.\'.l)dl'-f‘ J f{,(x.r)u,(x.l)du 34
- Fi - ¥

where we have assumed
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‘lirp g, (x.0) =0, ’_l.ir_nt u(x,t) -0 xeB (35)

and the definition 7,(x.f) = ¢,(x. )n,(x. ) is used. The first two terms in the left-hand side
of (34) are the total strain energy and the third one is the total kinetic energy and the sum
of these terms indicates the total energy stored in the body due to the external load system,
i.e. the load on the boundary and the body forces which appear on the right-hand side of
(34). Note that the load on the boundary (t,(X.)) comes out on the surfuce of the body
rather than in a layer. According to (30) for the difference solution we have

f-{}.skk(x.t)s,,(x.t)+2ue,-,-(x. De(x.0)} de+7() j ja(lx—.\"l.é)
8 BJ 8
X {AGu (X Deg(X, ) + 2pe,, (X, Dg (X, 0} de’ de

+ Jp(x)ti,(x. N, (x.0) de =0. (36)
B

The positiveness of the kinetic energy is a consequence of its definition. On the other hand.
we have shown that the total strain energy is also positive under the conditions (27). So.
we conclude from (34)

e, (x.0=0 and n(x.) =0 xeB, -x<t a7

Considering the initial and boundary conditions we arrive at the following result. If the
clastic constants and the interaction kernel satisfy the conditions (27) then the solutions of
an initial-boundary value problem defined by (10) -(15) differ from cach other only by rigid
motions.,

6. CONCLUSIONS

In this study we have shown that the initial-boundary value problems in homogencous,
isotropic, lincar, nonlocal elasticity defined by (10)-(15) possess only one solution under
the condition (27). In a previous work (Altan, 1984) we have given an analogous theorem
in which the stress-strain relation was of the form

1,(x, 1) = J‘a(]x—x'l){/’.ﬂk,‘(x'. 19, +2ue, (X', 1)} de(x’) (38)

4

and we have shown that if the interaction kernel is positive definite (i.e. all of the eigenvalues
are positive and the eigenfunctions constitute a complete orthonormal base in the square
integrable function space) then the initial-boundary value problems may have only onc
solution. As is clear from this study if the constitutive relation of nonlocal elasticity is
replaced by

AN = Agg (X 00,4+ 2pe,, (X 1) + J[f(lx—x'l){ll:kk(x', 05, +2ue, (x. 0} de(x’) (39)
B

then the internal kernel does not necessarily need to be a positive definite kernel to ensure
the uniqueness of the solutions of the initial-boundary value problems considered in this
study. Of course, this is an important difference, because the interaction kernel g(Ix — x|, &)
for the constitutive relation in the form (39) can be chosen from a wider class of functions.
But we believe that the essential difference between the constitutive relations (38) and (39)
can be clarified by constructing an existence theory for the boundary value problems in
nonlocal elasticity.
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